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Spike-timing-dependent learning rule to encode spatiotemporal patterns in a network
of spiking neurons

Masahiko Yoshioka*
Brain Science Institute, RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan

~Received 30 December 2000; revised manuscript received 9 April 2001; published 17 December 2001!

We study associative memory neural networks based on the Hodgkin-Huxley type of spiking neurons. We
introduce the spike-timing-dependent learning rule, in which the time window with the negative part as well as
the positive part is used to describe the biologically plausible synaptic plasticity. The learning rule is applied to
encode a number of periodical spatiotemporal patterns, which are successfully reproduced in the periodical
firing pattern of spiking neurons in the process of memory retrieval. The global inhibition is incorporated into
the model so as to induce the gamma oscillation. The occurrence of gamma oscillation turns out to give
appropriate spike timings for memory retrieval of discrete type of spatiotemporal pattern. The theoretical
analysis to elucidate the stationary properties of perfect retrieval state is conducted in the limit of an infinite
number of neurons and shows the good agreement with the result of numerical simulations. The result of this
analysis indicates that the presence of the negative and positive parts in the form of the time window contrib-
utes to reduce the size of crosstalk term, implying that the time window with the negative and positive parts is
suitable to encode a number of spatiotemporal patterns. We draw some phase diagrams, in which we find
various types of phase transitions with change of the intensity of global inhibition.
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I. INTRODUCTION

In the past few decades there has been some theore
interest in associative memory neural networks@1–4#. A ma-
jor breakthrough was made by Hopfield, who has introdu
the stochastic neural network model with an energy funct
@5#. By means of the method based on the statistical m
chanical theory several authors have conducted the inv
gations on Ising spin networks@6–12# and analog neura
networks@13–18#, which have clarified much of the funda
mental properties of associative memory neural network

Meanwhile, in electrophysiological experiments, a sign
cant effort has been devoted to clarify the capability of
real nervous system to memorize spatiotemporal patt
@19,20#. Recently, it has been revealed that in the long sp
sequences of the rat hippocampus short spike sequence
pear repeatedly@21#. This phenomenon imply the capabilit
of the rat hippocampus to memorize spatiotemporal patte
on the basis of spike timings, and hence, concern has b
raised about associative memory neural network model
which information is represented by spike timings of neuro
@22,23#.

To deal with the problem concerning spike timings
neurons one might consider investigating networks of sim
phase oscillators. Since some theoretical analysis is a
able, the stationary properties of associative memory ba
on networks of simple oscillators have been studied ex
sively both in the case of an extensive number of sto
patterns and in the case of distributed natural frequen
@24–28#. Even in the presence of white noise as well a
distribution of natural frequencies we can derive the stor
capacity of networks of phase oscillators analytically@29#.

*Electronic address: myosioka@brain.riken.go.jp
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For a more complete understanding of the informat
processing based on spike timings of neurons, it is, howe
necessary to adopt more biologically plausible neural n
work models because such features as the time evolutio
membrane potentials and decay time of synaptic electric
rents play a significant role in the rhythmic behavior of ne
rons. For this purpose, networks of spiking neurons are c
sidered to be suitable models for investigation, though
remains an unsolved problem to find the adequate learn
rule to encode spike timings in networks of spiking neuro

Since networks of spiking neurons with asymmetric sy
aptic connections exhibit sequential firings of neuro
@30,31#, one may consider that the learning rule to enco
spatiotemporal patterns should generate asymmetric syn
connections. Actually, incorporating asymmetric synap
connections, Gerstneret al. has investigated the networks o
the integrated-and-fire type of spiking neurons with discr
time dynamics, in which the encoded spatiotemporal patte
are successfully reproduced in spike timings of neurons
the process of memory retrieval@32#. Then, the question
arises as to how such asymmetric synaptic connections
developed in a real nervous system. The results of the re
electrophysiological experiments have revealed that
modification of a excitatory synaptic efficacy depends on
precise timings of presynaptic and postsynaptic firings@33–
35#. A synaptic efficacy is found to increase if firing of
presynaptic neuron occurs in advance of firing of a posts
aptic neuron, and to decrease otherwise. Accordingly,
time window to describe the spike-timing-dependent syn
tic plasticity takes the form having the negative and posit
parts as is described in Fig. 1. Several authors have prop
that this modification rule serves to solve such the proble
as path navigation@36,37#, direction selectivity@38,39#, com-
petitive Hebbian learning@40#, and biologically plausible
derivation of the Linsker’s equation as well as the Hebb
learning rule@41#. In the present study, we aim to tackle th
©2001 The American Physical Society03-1
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problem of how spatiotemporal patterns are encoded i
network of spiking neurons on the basis of the spike-timin
dependent modification rule. We introduce the spike-timin
dependent learning rule, which gives asymmetric syna
connections so that networks of spiking neurons function
associative memory.

Spiking neurons, we assume in the present study, inte
with each other without time delay, that is, every neur
obtains synaptic electric current immediately after one n
ron fires. In this case, the sequential firings of neurons
memory retrieval take place with rather short time interva
and one might consider such rapid pattern retrieval make
sense from a biological point of view. It may be desirab
that the network equips a certain mechanism to control sp
timings of neurons to realize the information processing w
the adequate processing period.

We hypothesize that the gamma oscillation is the k
mechanism to solving this problem. In the various regions
real nervous system, such as the neocortex and the hip
ampus, a population of neurons are found to exhibit synch
nized firings with a characteristic frequency of 20–80 H
and such synchronized firings of neurons, namely,
gamma oscillation, attract much attention of research
@42–48#. When the gamma oscillation arises, firings of ne
rons occur only around discrete time steps, and the situa
is somewhat similar to the case of the Hopfield model w
the discrete time dynamics. We hypothesize that such
crete type of firing pattern serves to control spike timings
neurons. Some experimental and theoretical results sup
the hypothesis that the global inhibition, which is induced
the presence of interneurons, plays a significant role in g
eration of the gamma oscillation@49–55#. In the present
study, incorporating the global inhibition into the model, w
aim to investigate the influence of the gamma oscillations
the properties of memory retrieval.

It should be noted that we can apply some theoret
techniques to analyze the stationary properties of the pre
system provided that the number of encoded patterns
sufficiently small~i.e., P/N!1, whereP is the number of
encoded patterns andN is the number of neurons!. When
retrieval is successful, the periodical behavior of every n
ron is identical, but shifts with respect to time depending
the value of the target pattern, and thus we can reduce
many-body problem into the single body problem in the lim

FIG. 1. The shape of the time windowW(Dt) with tW,1

510 (msec) andtW,255 (msec).
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of an infinite number of neurons. By use of this exact red
tion we can draw some phase diagrams, which clarify
condition for successful retrieval and the occurrence of ph
transitions. Furthermore, this method of analysis enables
to find one surprising property of the present system:
crosstalk term vanishes if the area of the positive part of
time window is equivalent to the area of the negative part
that the time integration of the time window takes the va
of zero. This result implies that the present form of the tim
window, which has the negative and positive parts, is s
able to encode a number of spatiotemporal patterns.

The present paper is organized as follows. In Sec. II,
present the details of the neural network model we study,
then we introduce the spike-timing-dependent learning r
to encode spatiotemporal patterns. In Sec. III, we investig
the stationary properties of the network in perfect retrie
state analytically. In the course of this analysis, it becom
clear that the negative and positive parts of the time wind
play an important role in reducing the size of crosstalk ter
In Sec. IV, we apply this method of analysis to the case w
continuous type of patterns to clarify the condition for t
occurrence of the perfect retrieval. The result of the num
cal simulations are presented showing good agreement
the result of the theoretical analysis. Then, in Sec. V, we tr
the case of discrete type of patterns, which are success
retrieved when the gamma oscillation arises. Finally, in S
VI, we give a brief summary of the present study.

II. MODEL OF A NETWORK OF SPIKING NEURONS

In real nervous system, some regions such as the neo
tex and the hippocampus are found to comprise a large n
ber of pyramidal cells and interneurons. In these netwo
pyramidal cells typically connect to other neurons~i.e., both
pyramidal cells and interneurons! via excitatory synapses
while interneurons connect to pyramidal cells via GABAe
gic synapses~inhibitory synapses! ~GABA, gamma amino
butyric acid!. When one pyramidal cell fires, the other pyr
midal cells obtain excitatory postsynaptic potential~EPSP!
due to the excitatory synapses that connect pyramidal ce
the other pyramidal cells. At the same time, some intern
rons surrounding the firing pyramidal cell also obtain EP
due to the excitatory synapses that connect the pyramidal
to interneurons. Since the threshold value for firing of int
neurons is rather small, these interneurons begin to fire
mediately after the arrival of action potentials from the firin
pyramidal cell, and then such firings of the interneurons g
rise to the inhibitory postsynaptic potentials~IPSPs! into a
large number of pyramidal cells via GABAergic synapses.
this way, when one pyramidal cell fires, the other pyrami
cells obtain two kinds of postsynaptic potentials: EPSP
duced by the direct arrival of action potential from the firin
pyramidal cell and IPSPs mediated by firings of interneuro
surrounding the firing pyramidal cell.

For the purpose of elucidating the fundamental proper
of the nervous system composed of pyramidal cells and
terneurons, we investigate a network ofN spiking neurons
interacting through two types of synaptic electric curren
namely, electric currents via plastic synapsesJi j and global
3-2
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inhibition. The dynamics of a network of spiking neurons w
study is expressed in the form

V̇i5 f ~Vi ,Wi1 , . . . ,Win!1I i~ t !, ~1!

Ẇi j 5gj~Vi ,Wi1 , . . . ,Win!,

i 51, . . . ,N, j 51, . . . ,n, ~2!

with

I i~ t !5I pyr,i~ t !1I int~ t !1I ext,i~ t !, ~3!

whereVi(t) denotes the membrane potential of neuroni and
Wi j (t) auxiliary variables necessary for neurons to exh
spiking behavior. The definition of the electric curren
I pyr,i(t),I int(t), and I ext,i(t) will be explained in what fol-
lows. Note that now we focus on the dynamics of a netw
of N pyramidal cells and omit describing the detailed dyna
ics of interneurons@56#. For the dynamicsf (V,W1 , . . . ,Wn)
and gj (V,W1 , . . . ,Wn), several authors have assumed t
Hodgkin-Huxley equations@57#, the FitzHugh-Nagumo
le
a

i-

l

un
ry
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equations@58,59#, and so on. In the present study we assu
the Hodgkin-Huxley equations, and hence the degrees
freedom of a state of a neuron is 4~i.e., n53). In the Ap-
pendix, we present the details of the Hodgkin-Huxley eq
tions we adopt in the present study.

I pyr,i(t) denotes a sum of synaptic electric currents
plastic synapsesJi j , which is activated by the arrival of ac
tion potential from other pyramidal cells. We define firin
times of neuroni as the time when the membrane potent
Vi(t) exceeds the threshold valueV050 and denotekth fir-
ing time of neuroni by t i(k). Then, the synaptic electric
currentI pyr,i(t) is written in the form

I pyr,i~ t !5Apyr(
j 51

N

(
k

Ji j Spyr$t2t j~k!%, i 51, . . . ,N,

~4!

whereJi j denotes a synaptic efficacy from neuronj to neuron
i, andApyr is the variable controlling the intensity of synap
tic electric currentI pyr,i(t). We assume the time-depende
postsynaptic potentialSpyr(t) of the form
Spyr~ t !5H 0, t,0

1

tpyr,12tpyr,2
H expS 2

t

tpyr,1
D2expS 2

t

tpyr,2
D J , 0<t.

~5!
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In what follows, we set tpyr,1510 (ms) and tpyr,2
55 (ms).

For the sake of brevity, instead of describing the detai
dynamics of interneurons, we simply assume that IPSPs
induced in other pyramidal cells immediately after one ofN
pyramidal cells fires@56#, that is, we assume global inhib
tion I int(t) of the form

I int~ t !5
Aint

N (
j 51

N

(
k

Sint$t2t j~k!%, ~6!

whereAint is the variable controlling the intensity of globa
inhibition. Note that the global inhibitionI int(t) is indepen-
dent of indexi since every neuron obtains the same amo
of inhibitory electric current. The time-dependent inhibito
postsynaptic potentialSint(t) is described as

Sint~ t !5H 0, t,0

21

t int,12t int,2
H expS 2

t

t int,1
D2expS 2

t

t int,2
D J ,

0<t.
~7!

Note thatSint(t) takes negative value in the interval 0<t. In
what follows, we sett int,155 (msec) andt int,252.5 (ms)
so thatSint(t) decays faster thanSpyr(t).
d
re

t

The external electric currentI ext,i(t) is used to control
initial firings of neurons. For the initial condition of the ne
work, we set state of neurons (Vi ,$Wi%)( i 51, . . . ,N) to be
at the stable fixed point of the dynamics of Eqs.~1! and ~2!
with I i(t)50. It means that, without any external stimuli, a
neurons keep quiescent irrespective of the strength of sy
tic efficacy Ji j . Thus, for the purpose of invoking initia
firings that act as a trigger to retrieve the target pattern,
use the pulsed form of the external electric currentI ext,i(t)
only at the beginning of the evolution of the dynamics. The
the initial firings of neurons invoke the synaptic electric cu
rents, which become driving force for the next firings
neurons. Note that the external electric currentI ext,i(t) is
used only at the beginning. In the theoretical analysis be
we setI ext,i(t)50 because we focus on the stationary beh
ior in this analysis.

The aim of considering the present model is to investig
the properties of nervous system composed of pyram
cells and interneurons. As is mentioned above, in real n
vous system, pyramidal cells are found to interact with ot
pyramidal cells via excitatory synapses. Nevertheless,
what follows, for the purpose of simplifying the situation, w
assume that the synaptic efficacyJi j can take not only posi-
tive value but also negative value. This assumption might
somewhat implausible, but allows one to introduce t
simple learning rule, which is amenable to satisfactory le
of analysis. In the next section, on the basis of naive assu
3-3
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MASAHIKO YOSHIOKA PHYSICAL REVIEW E 65 011903
tion that this simplification does not change the fundame
properties of the system, we introduce the learning rule
is capable of encoding a number of spatiotemporal patte

A. The spike-timing-dependent learning rule to encode
spatiotemporal patterns

The periodical spatiotemporal patterns we investigate
the present study are generated randomly with the const
that every neuron fires only once in one period. We repres
these spatiotemporal patterns by using the firing timessi

m

P@0,T)( i 51, . . . ,N, m51, . . . ,P), whereP is a number
of patterns andT is a period of spatiotemporal patterns. T
choosesi

m randomly from the interval@0,T) we use the equa
tion

si
m5

T

Q
qi

m , i 51, . . . ,N, m51, . . . ,P, ~8!

whereQ is a natural number controlling the degree of d
creteness of spatiotemporal patterns and random integeqi

m

is chosen from the interval@0,Q) with equal probability. We
term random patterns with finiteQ discrete type of patterns
while we term those withQ→` continuous type of patterns
In what follows, settingT5100, we study the case of dis
crete type of patterns (Q510) as well as continuous typ
patterns (Q→`). By considering the case of discrete type
patterns we aim to study the effect of the occurrence of
gamma oscillation in the learning process. For convenie
of the calculation below, we introduce the phase variablesu i

m

defined as

u i
m5

2p

Q
qi

m5
2p

T
si

m . ~9!

To find a clue to encode spatiotemporal patterns in a
work of spiking neurons, we begin by estimating the mo
fication of synaptic efficacy assuming that neurons fire p
odically according to one of the spatiotemporal patterns. T
results of the recent electrophysiological experiments s
gest that the modification of a synaptic efficacy depends
the precise timings of presynaptic and postsynaptic firi
@33–35#, and such modification of synaptic efficacyDJ is
approximately written in the form

DJ}W~Dt !

5H 21

tW,12tW,2
H expS Dt

tW,1
D2expS Dt

tW,2
D J , Dt,0

1

tW,12tW,2
H expS 2

Dt

tW,1
D2expS 2

Dt

tW,2
D J , 0<Dt,

~10!

with

Dt5tpost2tpre , ~11!

where tpost and tpre denote firing times of presynaptic an
postsynaptic neurons, respectively. In what follows, we
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tW,1510 (ms) andtW,255 (ms), with which the time win-
dow W(Dt) takes the form described in Fig. 1. When ne
rons fire periodically according to pattern 1, namely,si

1 , the
firing times of neurons are written in the form

s̃i
1~k!5si

11kT, i 51, . . . ,N,

k5 . . . ,22,21,0,1,2, . . . . ~12!

Substituting Eq.~12! into Eq. ~10! we obtain a the rough
estimation of the modification of synaptic efficacy,

DJi j } (
ki52`

`

(
kj 52`

`

W$s̃i
1~ki !2 s̃j

1~kj !%

5(
ki

(
kj

W~si
12sj

11kiT2kjT!

} (
k52`

`

W~si
12sj

11kT!5W̃~si
12sj

1!, ~13!

where the periodical functionW̃(Dt1T)5W̃(Dt) is defined
as

W̃~Dt !5 (
k52`

`

W~Dt1kT!. ~14!

Substituting Eq.~10! into Eq.~14! yields the explicit form of
the functionW̃(Dt),

W̃~Dt !5
1

tW,12tW,2
H e2Dt/tW,12exp@2~T2Dt !/tW,1#

12e2T/tW,1

2
e2Dt/tW,22exp@2~T2Dt !/tW,2#

12e2T/tW,2
J .

0<Dt,T. ~15!

In the above estimation we have treated the case with o
a single spatiotemporal pattern. Now we would like to e
tend this result to the case with a number of spatiotemp
patterns. Since the total change of synaptic efficacy is
sumed to be given by the sum of the individual changes,
extend Eq.~14! to the form

Ji j 5
1

N (
m51

P

W̃~si
m2sj

m!5
1

N (
m51

P

W̃H T

2p
~u i

m2u j
m!J ,

~16!

where we take proper scaling with respect toN. This is the
3-4
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learning rule we adopt in the present study. In what follow
we investigate networks of spiking neurons in which syn
tic efficacyJi j is given by Eq.~16!. As will be shown in the
next section, spatiotemporal patterns encoded by use o
learning rule~16! are retrieved successfully if we give a
appropriate initial condition.

III. ANALYSIS OF THE STATIONARY PROPERTIES OF
PERFECT RETRIEVAL STATE IN THE CASE OF A

FINITE NUMBER OF ENCODED PATTERNS

The present neural networks happen to show rich var
of dynamical behavior depending on the value of the para
eters such asApyr andAint . Among these behavior the mo
important one may be pattern retrieval in which every neu
fires periodically according to one of the encoded patterns
such a case, firing times of neurons are written in the fo

t i~k!5
T̃

2p
u i

11kT̃, i 51, . . . ,N,

k5 . . . ,22,21,0,1,2, . . . , ~17!

where we chose pattern 1 as the retrieved one. Note tha
general,T̃, which is the period of firing motion in the proces
of pattern retrieval, is not equivalent toT, which is the period
assumed in generating random patterns. Since no fluctua
of firing times is allowed in Eq.~17!, we term the stationary
state defined by Eq.~17! as the perfect retrieval state. In th
section, we conduct the theoretical analysis to elucidate
stationary properties of the perfect retrieval state.

One purpose of the present analysis is to determine
value of the periodT̃. In the course of the present analys
we evaluate periodical synaptic electric currentsI i(t)
5I pyr,i(t)1I int(t) as a function ofT̃. Once we know the
time-dependent behavior of periodical synaptic electric c
rentsI i(t), we are allowed to calculate firing motion of ne
rons numerically by use of Eqs.~1! and ~2!. Then, based on
this firing motion, we determine the value of the periodT̃
self-consistently. In what follows,P is assumed to be finite
since perfect retrieval is impossible with an extensive nu
ber of encoded patterns.

Substituting Eq.~16! into Eq. ~4!, we have

I pyr,i~ t !5
Apyr

N (
m

(
j

W̃H T

2p
~u i

m2u j
m!J

3(
k

Spyr$t2t j~k!%. ~18!
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Then, from Eq.~17!, we obtain

I pyr,i~ t !5
Apyr

N (
m

(
j

W̃H T

2p
~u i

m2u j
m!J

3 (
k52`

`

SpyrS t2
T̃

2p
u j

12kT̃D
5

Apyr

N (
m

(
j

W̃H T

2p
~u i

m2u j
m!J S̃pyrS t2

T̃

2p
u j

1D ,

~19!

where

S̃pyr~ t !5 (
k52`

`

Spyr~ t1kT̃!. ~20!

Substituting Eq.~5! into Eq. ~20! yields the explicit form of
the functionS̃pyr(t),

S̃pyr~ t !5
1

tpyr,12tpyr,2
S e2t/tpyr,1

12e2T̃/tpyr,1
2

e2t/tpyr,2

12e2T̃/tpyr,2
D ,

0<t,T̃, ~21!

where the periodical functionS̃pyr(t) satisfies the condition
S̃pyr(t1T̃)5S̃pyr(t).

For the purpose of evaluating the correlation with resp
to the variablesu i

m , we decompose Eq.~19! into the form

I pyr,i~ t !5Mi~ t !1Zi~ t !, ~22!

where

Mi~ t !5
Apyr

N (
j

W̃H T

2p
~u i

12u j
1!J S̃pyrS t2

T̃

2p
u j

1D ,

~23!

Zi~ t !5Apyr (
m>2

1

N (
j

W̃H T

2p
~u i

m2u j
m!J S̃pyrS t2

T̃

2p
u j

1D .

~24!

Since the termZi(t) emerges as a result of encoding a nu
ber of spatiotemporal patterns, we call the termZi(t)
crosstalk term. In the limit ofN→`, the term Mi(t) is
evaluated as
Mi~ t !55
Apyr

Q (
q50

Q21

W̃H T

Q
~qi

11q!J S̃pyrS t1
T̃

Q
qD , finite Q

Apyr

2p E
0

2p

W̃H T

2p
~u i

11u!J S̃pyrS t1
T̃

2p
u D du, Q→`.

~25!
3-5
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On the other hand, sinceu i
m (m>2) has no correlation with

u i
1 , in the limit of N→`, crosstalk termZi(t) is evaluated as

Zi~ t !5Apyr~P21!W̄S̄~ t !, ~26!

where

W̄55
1

Q (
q50

Q21

W̃S T

Q
qD , finite Q

1

2pE0

2p

W̃S T

2p
u Ddu, Q→`,

~27!

and

S̄~ t !55
1

Q (
q50

Q21

S̃pyrS t1
T̃

Q
qD , finite Q

1

2pE0

2p

S̃pyrS T̃

2p
u D du, Q→`.

~28!

Noting Eqs.~14! and ~20!, we obtain another representatio
of W̄ and S̄(t),

W̄55
1

Q (
q52`

`

WS T

Q
qD , finite Q

1

2pE2`

`

WS T

2p
u Ddu, Q→`,

~29!

and

S̄~ t !55
1

Q (
q52`

`

SpyrS t1
T̃

Q
qD , finite Q

1

T̃
, Q→`,

~30!

where we use*2`
` Spyr(t)dt51.

Following almost the same scheme asI pyr,i(t), from Eqs.
~6! and ~17!, we obtain the global inhibitionI int(t) of the
form

I int~ t !55
Aint

Q (
q50

Q21

S̃intS t1
T̃

Q
qD , finite Q

Aint

2p E
0

2p

S̃intS t1
T̃

2p
u D du, Q→`,

~31!

where

S̃int~ t !5 (
k52`

`

Sint~ t1kT̃!. ~32!

Substituting Eq.~6! into Eq.~32!, we obtain the explicit form
of the functionS̃int(t),
01190
S̃int~ t !5
21

t int,12t int,2
S e2t/t int,1

12e2T̃/t int,1
2

e2t/t int,2

12e2T̃/t int,2
D ,

0<t,T̃, ~33!

where the periodical functionS̃int(t) satisfies the condition
S̃int(t1T̃)5S̃int(t). Utilizing *2`

` Sint(t)dt521, we obtain
another representation ofI int(t),

I int~ t !55
Aint

Q (
q52`

`

SintS t1
T̃

Q
qD , finite Q

2
Aint

T̃
, Q→`.

~34!

Substituting Eqs.~22! and~26! into Eq.~3!, we obtain the
periodical synaptic electric currentsI i(t) of the form

I i~ t !5Mi~ t !1I int~ t !1Apyr~P21!W̄S̄~ t !. ~35!

Note that now all the terms in the right-hand side of Eq.~35!

are evaluated as a function ofu i
1 and T̃, and hence we can

evaluate the time-dependent behavior ofN neurons as a func
tion u i

1 and T̃ based on the dynamics~1! and ~2! together
with Eq. ~35!. In the case of perfect retrieval, the periodic
behavior of every neuron is identical, but shifts with resp
to time depending on the valueu i

1 . In fact, noting Eq.~25!,
one can show that a sum of synaptic electric currentsI i(t)
satisfies the condition

I i S t1
T̃

2p
u i

1D 5I j S t1
T̃

2p
u j

1D ,

i 51, . . . ,N, j 51, . . . ,N. ~36!

By use of this property, the behavior ofN neurons is easily
evaluated once we know the behavior of a single neuron,
is, what we need to solve is not a many-body problem bu
single-body problem. Hence, we focus on investigating
behavior of a single neuron withu i

150 in what follows.
For a single neuron withu i

150, we rewrite the dynamics
Eqs.~1!, ~2!, and~35! in the form

V̇5 f ~V,W1 , . . . ,Wn!1I ~ t !, ~37!

Ẇj5gj~V,W1 , . . . ,Wn!, j 51, . . . ,n, ~38!

with

I ~ t !5M ~ t !1I int~ t !1Apyr~P21!W̄S̄~ t !, ~39!

where, from Eq.~25!, the termM (t) is rewritten in the form
3-6
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M ~ t !55
Apyr

Q (
q50

Q21

W̃S T

Q
qD S̃pyrS t1

T̃

Q
qD , finite Q,

Apyr

2p E
0

2p

W̃S T

2p
u D S̃pyrS t1

T̃

2p
u D du, Q→`.

~40!

Note thatI int(t), W̄, and S̄(t) in Eq. ~39! is given by Eqs.
~31!, ~27!, and~28!, respectively.

By use of the Hodgkin-Huxley equations, we can evalu
the dynamics~37!–~39! numerically for arbitrary value ofT̃.
As is describe in Fig. 2, withT̃ that is sufficiently close to the
solution T̃* , the neuron exhibits periodical firing behavio
and hence the firing times are written in the form

t~k!5r ~ T̃!1kT̃, k5 . . . ,22,21,0,1,2. . . . . ~41!

Note that we can evaluate the explicit form of the functi
r (T̃) by conducting the numerical integration of the dyna
ics ~37!–~39! for various value ofT̃.

On the other hand, since we evaluate the periodical s
aptic electric current~39! based on the assumption~17!, with
the solutionT̃* the firing times take the form

t~k!5
T̃*

2p
u1kT̃* 5kT̃* , k5 . . . ,22,21,0,1,2. . . . .

~42!

Hence, from Eqs.~41! and ~42!, we obtain the condition

r ~ T̃* !50. ~43!

Since we have evaluated the explicit form of the functi
r (T̃) by the numerical integration, we can solve Eq.~43! so
as to obtain the solutionT̃* .

In the above analysis, we did not take account of
stability of the solution. Strictly speaking, the present n
works may happen to fail in perfect retrieval for lack of th
stability even whenT̃ is successfully evaluated in the abo
analysis. However, as far as we investigate by numer
simulations, every solution we obtain in the present analy
seems to ensure the stability as will be shown in Sec. IV
Sec. V.

A. The time window W„Dt… with the negative and positive
parts is suitable to encode a number

of spatiotemporal patterns

It has been shown that the crosstalk term of the stand
type of the Hopfield model vanishes with an appropri
learning rule as far as the number of encoded pattern
finite. In such a case, perfect retrieval is always realized
respective of the number of encoded patterns. In the cas
the present neural network, the periodical synaptic elec
current ~35! includes the crosstalk termApyr(P21)W̄S̄(t),
which is proportional toP21. From Eqs.~5! and ~30!, one
can show thatS̄(t) always takes the positive value. Ther
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fore, whenW̄ takes the nonzero value, the quality of patte
retrieval changes depending on the number of encoded
terns; AsP increases, the size of the synaptic electric curr
I i(t) increases or decreases depending on the sign ofW̄, and
eventually perfect retrieval becomes impossible. For th
reasons, it may be highly desirable thatW̄ takes the small
value in the present purpose.

It should be noted thatthe quantity W̄, which is defined by
Eq. (29!, is the average of the function W(Dt) over the time

FIG. 2. The stationary behavior of the single neuron dynam
~37!–~39!, which is analytically derived for the purpose of evalua
ing the periodical firing behavior of a network of neurons. For t

several value ofT̃, which is close to the solutionT̃* , the time
evolution of I (t) and V are plotted together with the firing times

which are marked by closed circles@~a! T̃5T̃* 210, ~b! T̃5T̃* , ~c!

T̃5T̃* 110#. Inset, A magnification representing the behavior
I (t) and V within one period. Note that the firing time takes th

form t(k)5kT̃ (k5 . . . ,22,21,0,1,2, . . . ) only in the case of
~b!. The value of parameters areQ→`, Apyr520000, andAint

5250, which are the same values as we use in Figs. 3 and 4.
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DtP(2`,`), and thus the presence of the negative a
positive parts in the form of the time window W(Dt) is of

advantage to reduce the value of W¯. In fact, the form of the
time windowW(Dt) we assume in the present study satisfi
the condition

5 (
q52`

`

WS T

Q
qD50, finite Q

E
2`

`

W~t!dt50, Q→`.

~44!

Therefore, from Eq.~29!, we obtain

W̄50. ~45!

In the present case, the crosstalk termApyr(P21)W̄S̄(t)
vanishes completely. Accordingly, perfect retrieval is alwa
realized irrespective of the number of encoded patterns a
asP is finite. In what follows, settingW̄50, we analytically
evaluate the stationary behavior of the network. It turns
that the result of the present analysis shows the good ag
ment with the results of the numerical simulations even wh
a number of patterns are encoded.

IV. THE CASE OF CONTINUOUS TYPE OF PATTERNS
„Q\`…

A. Perfect retrieval with the weak intensity of global
inhibition

For the initial condition of the network, we set state
neurons (Vi ,$Wi%)( i 51, . . . ,N) to be at the stable fixed
point of the dynamics of Eqs.~1! and ~2! with I i(t)50.
Since all neurons keep quiescent without any exter
stimuli, to invoke initial firings that act as a trigger to re
trieve the target patternsi

1 , we use the external electric cu
rent I ext,i(t) of the form

I ext,i~ t !5H Aext 0< s̃i
1,aextText and s̃i

1<t, s̃i
11Dtext

0, otherwise,
~46!

with

s̃i
15

Text

2p
u i

1 , ~47!

where the parametersAext , Text , Dtext , and aext are ap-
propriately chosen so that an initial part of the target patt
is forced to be retrieved. In what follows, we setAext

510, Dtext51, aext50.2, andText;T̃. ~Once note thatT̃
is not equivalent toT.!

In Fig. 3~a!, we describe the result of the numerical sim
lation with the weak intensity of global inhibitionAint
5250 in the case ofQ→` andApyr520 000. After the ini-
tial firings that are invoked by the application of the extern
electric currentI ext,i(t), perfect retrieval is realized as a re
sult of the emergence of the periodical synaptic electric c
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rents. Since it is somewhat difficult to see whether the tar
pattern is retrieved or not in Fig. 3~a!, setting the vertical axis
to represent the phase variables of the target patternu i

1 , we
replot the same result in Fig. 3~b!, where we see the continu
ous type of firing pattern implying the occurrence of t
perfect retrieval of the target pattern.

In Fig. 4~a!, we describe the dynamical behavior of
neuron withu i

150. In this result, the neuron is found to fir
periodically after a long time. In the case of perfect retriev
we are allowed to apply the theoretical analysis conduc
above so as to evaluate the periodical firing motion o
neuron in the limit of an infinite number of neurons. Th
result of the theoretical analysis is described in Fig. 4~b!.
Good agreement between the numerical result in Fig. 4~a!
and the theoretical result in Fig. 4~b! implies the validity of
the present analysis.

B. The phase transition occurs with change of the intensity of
global inhibition

As is discussed in the previous section, in the case of
weak intensity of global inhibition, perfect retrieval of con
tinuous type of patterns is realized. On the other hand, w
the strong intensity of global inhibition is applied, we o
serve the discrete type of firing pattern as is described in
5, where we setAint51250. In the present study, we ca

FIG. 3. The result of the numerical simulation withQ
→`, Apyr520 000, Aint5250, P53, and N52000. ~a! The
traces of firing times of neurons are plotted with points. In t
interval 0<t,aextText512, we apply the pulsed external electr
currentI ext(t) of the form~46! with Text560 so that the initial part
of the target pattern is forced to be retrieved.~b! Setting the vertical
axis to represent the phase variables of the target patternu i

1 , we
replot the result in~a!.
3-8
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SPIKE-TIMING-DEPENDENT LEARNING RULE TO . . . PHYSICAL REVIEW E65 011903
such a discrete type firing pattern as the gamma oscillat
In this discrete type of firing pattern we find a number
components of the continuous type of firing patterns of sh
duration. During the occurrence of each component, inh
tory synaptic electric currentsI int(t) accumulate until they
begin to suppress more firings of neurons. After a stop
continuous firings, the inhibitory synaptic electric curren
I int(t) decay fast owing to the short decay timest int,1 and
t int,2 . Subsequently, neurons begin to fire again becaus
the synaptic electric currentsI pyr,i(t), which have the longer
decay timestpyr,1 and tpyr,2 than those ofI int(t). The
gamma oscillation in the present study is induced by
iteration of this process.

As far as perfect retrieval is concerned, it is uncomp
cated to investigate the properties of the stationary state
lytically, while the analysis becomes quite difficult once t
system settles into the other state such as discrete typ
firing patterns. Nevertheless, within the scope of the pres
analysis, we can determine the critical intensity of glob
inhibition Aint

c , which characterizes the phase transition b
tween the perfect retrieval state and the other state. In Fig
we depict theAint2Apyr phase diagram showing the cond
tion for the occurrence of perfect retrieval. In the regi
denoted by PR, the period of the perfect retrievalT̃ is suc-
cessfully evaluated, that is, the perfect retrieval is realize

FIG. 4. ~a! Time evolution of the membrane potentialV of a
neuron withu i

150, which is observed in the numerical simulatio
in Fig. 3, is plotted together with a sum of the synaptic elec
currentsI i(t)5I pyr,i(t)1I int(t)1I ext,i(t). ~b! The result of the the-
oretical evaluation of the stationary behavior of a neuron. In
numerical simulation~a!, the neuron exhibits periodical firing mo
tion after a long time, and this periodical firing motion shows t
good agreement with the result of the present analysis~b!.
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the region PR, while outside the region the perfect retrie
is impossible.

In this phase diagram, the critical intensity of the glob
inhibition in the case ofApyr520 000 is evaluated asAint

c

;630. To clarify the occurrence of the phase transition
this critical intensityAint

c , for various value ofAint we com-
pute a distribution of the inter spike intervals~ISIs!, which
are the time intervals of sequential firings of neurons in
numerical simulations. Note that what we compute is not

e

FIG. 5. The result of the numerical simulation withQ
→`, Apyr520 000, Aint51250, P53, and N52000. ~a! The
traces of firing times of neurons are plotted with points. Note t
the vertical axis represents the phase variables of the target pa
u i

1 . ~b! Time evolution of the membrane potentialV of a neuron
with u i

150 is plotted together with a sum of the synaptic elect
currentI i(t)5I pyr,i(t)1I int(t)1I ext,i(t).

FIG. 6. Aint2Apyr phase diagram showing the condition for th
occurrence of the perfect retrieval in the case ofQ→`. In the
region represented by PR, the perfect retrieval is realized since

periodT̃ is successfully evaluated in the present analysis~see text!.
Outside the region represented by PR, the other type of statio
state is realized.
3-9
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MASAHIKO YOSHIOKA PHYSICAL REVIEW E 65 011903
ISIs of a single neuron but the ISIs of all neurons, that
when neuroni and neuronj fire sequentially att i and t j
respectively, we compute the time intervalt j2t i . The result
of the computation of ISIs is plotted in Fig. 7~a!. Since,
below the critical intensityAint

c , the continuous type of firing
pattern is realized, every ISI becomes almost zero. Bey
the critical intensityAint

c , owing to the occurrence of non
perfect retrieval we see the distribution of the ISIs with tw
components, namely, the component with the short ISIs
the component with the long ISIs. The appearance of
component with the short ISIs is attributed to the emerge
of the continuous type of firing patterns of short durati
while the appearance of the long ISIs is attributed to
period during which firing of neurons are suppressed. In F
7~a!, we clearly see the occurrence of the phase transitio
the critical intensity of global inhibitionAint

c .

V. THE CASE OF DISCRETE TYPE OF PATTERNS
„QÄ10…

As in the case of continuous type of patterns, perfect
trieval is realized even in the case of discrete type of p
terns. In Fig. 9, we describe the result of the numerical sim
lations, where we see the discrete type of firing pattern a
result of the retrieval of the discrete type of pattern withQ
510. In the numerical simulation in Fig. 9, we assume
weak intensity of global inhibition (Aint5250). In the case
of discrete type of patterns, with change of the intensity

FIG. 7. ~a! A distribution of the interspike intervals~ISIs! is
plotted for the various value ofAint in the case ofQ→`, Apyr

520 000, P51, andN52000. See text for the definition of th

ISIs we compute.~b! Aint dependence of the periodT̃ obtained from
the present analysis. We see the phase transition at the critica
tensity of global inhibitionAint

c ;630, beyond which perfect re
trieval is impossible.
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global inhibition we find a variety of stationary behavio
which is much richer than that in the case of continuous ty
of patterns.

A. Two types of perfect retrieval state

Following the same scheme as continuous type of p
terns, we describe theAint2Apyr phase diagram in Fig. 8
Unlike the case of the continuous type of patterns, we fi
the two kinds of critical intensity of global inhibitionAint

c (1)
andAint

c (2) in the region with 13 000&Apyr&23 000, that is,
we see two types of the phase transitions with change of
intensity of global inhibitionAint .

To elucidate the nature of these two types of the ph
transitions, fixingApyr517 000, we conduct the numerica
simulations for the various value ofAint . In Fig. 9, we de-
scribe the result of the numerical simulations withAint
5250, which is weaker than the first critical intensi

FIG. 8. Same as Fig. 6, except thatQ510.

FIG. 9. Same as Fig. 5, except thatQ510, Apyr517 000, and
Aint5250. Note that each point in~a! shows firings of;N/Q neu-
rons, because a cluster of neurons with the same value ofu i

1 fire
synchronously.

in-
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SPIKE-TIMING-DEPENDENT LEARNING RULE TO . . . PHYSICAL REVIEW E65 011903
Aint
c (1). As is expected from the phase diagram in Fig.

perfect retrieval occurs with this intensity of global inhib
tion. In this case, global inhibition is so weak that the infl
ence of global inhibition on the properties of the retriev
state is insignificant.

On the other hand, when we apply the stronger inten
of global inhibition Aint than the second critical intensit
Aint

c (2), theglobal inhibition exerts the significant influenc
on the nature of the retrieval process. In Fig. 10, we desc
the result of numerical simulation withAint51250, where
we see the perfect retrieval with the long period. With t
strong intensity of global inhibition the gamma oscillatio
arises and affects to make the retrieval period long. In
retrieval process of discrete type of patterns, a cluste
neurons withu i

152p(1/Q) fire after a cluster of neuron
with u i

152p(0/Q) fire. Firing of a cluster of neurons with
u i

152p(0/Q) induces two types of synaptic electric cu
rents: the global inhibition as well as the excitatory synap
electric current that evokes firing of a cluster of neurons w
u i

152p(1/Q). The emergence of the global inhibition pr
vents the immediate firing of the next cluster. After a cert
time interval the global inhibition decays, and then a clus
of neurons withu i

152p(1/Q) begins to fire owing to the
excitatory synaptic electric current. As a result of the int
action of these processes, the gamma oscillation arise
that the pattern retrieval occurs with the long period. It tu
out that the occurrence of the gamma oscillation gives
appropriate spike timings for memory retrieval of discre
type of patterns though it is of disadvantage in the case
continuous type of patterns.

FIG. 10. Same as Fig. 5, except thatQ510, Apyr517 000, and
Aint51250.
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B. Disordered state with the intermediate intensity of global
inhibition

With the intermediate intensity of global inhibitio
Aint

c (1),Aint,Aint
c (2) the perfect retrieval is impossible a

is shown in Fig. 8. In Fig. 11, we describe the result of t
numerical simulations with the intermediate intensity of g
bal inhibitionAint5750, where we find the disordered firin
pattern. In this case, the dynamical behavior of a neuron i
complicated that it is quite difficult to specify whether th
time evolution ofI i(t) andVi is periodic or not. In addition,
neurons with the same value ofu i

1 exhibits the different dy-
namical behavior, because we see the slight distribution
the firing times of neurons with the same value ofu i

1 in
Fig. 11~a!.

For the purpose of elucidating the difference of the dis
dered state from the perfect retrieval state, we compute
ISIs for various value ofAint as is described in Fig. 12. In th
two intervals Aint<Aint

c (1) and Aint
c (2)<Aint , where the

perfect retrieval is expected to occur, the ISIs take 0 orT̃/Q.
Analytically evaluatedAint-dependence ofT̃/Q in Fig. 12~b!
shows the good agreement with the result of numerical sim
lations in Fig. 12~a!. Meanwhile, in the intervalAint

c (1)
,Aint,Aint

c (2), where perfect retrieval is impossible, w
see the quite complicated distribution of the ISIs. It turns o
that with change of the intensity of global inhibition tw
types of phase transitions occur at the critical intens
Aint

c (1) andAint
c (2).

VI. DISCUSSION

We have investigated associative memory neural n
works of spiking neurons interacting through two types

FIG. 11. Same as Fig. 5, except thatQ510, Apyr517 000, and
Aint5750.
3-11
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MASAHIKO YOSHIOKA PHYSICAL REVIEW E 65 011903
synaptic electric currents: currents via plastic synapses
global inhibition. Based on the result of the electrophy
ological experiments, we have introduced the spike-timi
dependent learning rule~16!, which encodes spike timings o
neurons so that networks function as associative memor

To elucidate the stationary properties of perfect retrie
state, we have evaluated the periodical firing motion of n
rons analytically in the limit of an infinite number of neu
rons. Based on this method of analysis, we have shown
the present form of the time windowW(Dt) has the great
advantage in encoding a number of spatiotemporal patt
since the crosstalk term is proportional to the quantityW̄,
which has been shown to vanish owing to the negative
positive parts of the time windowW(Dt).

We have examined to encode two types of spatiotemp
patterns: continuous type of patterns (Q→`) and discrete
type of pattern (Q510). In the case of continuous type o
patterns, perfect retrieval is realized with the weak intens
of global inhibition, while it is impossible with the stron
intensity of global inhibition since the occurrence of gamm
oscillation prevents the realization of perfect retrieval. A
plying the present method of analysis we have drawn
Aint2Apyr phase diagram in Fig. 6, in which we have eva
ated the critical intensityAint

c characterizing the phase tran
sition between the perfect retrieval state and the other s

Meanwhile, in the case of discrete type of patterns,
have found two types of perfect retrieval state, which
characterized by the two critical intensities:Aint

c (1) and

FIG. 12. ~a! Same as Fig. 7~a!, except thatQ510 andApyr

517 000. ~b! Aint dependence ofT̃/Q obtained from the presen
analysis is plotted. We see the two types of phase transitions a
critical intensity of global inhibitionAint

c (1);420 and Aint
c (2)

;1080. In the intervalAint
c (1)<Aint<Aint

c (2), theperfect retrieval
is impossible.
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Aint
c (2) ~see theAint2Apyr phase diagram in Fig. 8!. When

the intensity of global inhibitionAint is weaker than the firs
critical intensityAint(1), retrieval is successful as in the ca
of the continuous type of patterns. In addition, even with
strong intensity of global inhibitionAint , perfect retrieval is
realized provided that the intensityAint is stronger than the
second critical intensityAint

c (2). In this case, the gamma
oscillation arises, and it gives the appropriate spike timin
for retrieval of discrete type of patterns. With the interme
ate intensityAint

c (1),Aint,Aint
c (2) we have observed th

rather complicated firing patterns as is shown in Fig. 11.
It is noted that the crosstalk termApyr(P21)W̄S̄(t) van-

ishes if the time windowW(Dt) satisfies the condition~44!.
Although the results of some electrophysiological expe
ments indicate the slight dominance of the positive part
the time windowW(Dt) over the negative part, the presen
of the negative part is still profitable to reduce the size ofW̄
because of Eq.~29!. Although the function of the form like
the sombrero may also satisfy the condition~44!, the present
form of the time windowW(Dt) is considered to be more
adequate to encode spatiotemporal patterns since the e
gence of the excitatory synaptic electric current before fir
of a neuron in the retrieval process is attributed to the po
tive part of the time windowW(Dt), while the fast decay of
this excitatory synaptic electric current after firing is attri
uted to the negative part. We have to, however, keep in m
that the assumption that synaptic efficacyJi j can take nega-
tive value as well as positive value may be somewhat
plausible from a biological point of view since synaps
among pyramidal cells are found to be excitatory in expe
ments. The present learning rule~16!, which gives either
negative synaptic efficacy or positive synaptic efficacy
chance, is introduced based on the rough estimation of
modification of synaptic efficacy in the Sec. II A. This roug
estimation is somewhat tricky since some quantities dive
in its procedure owing to the absence of the dumping effe
Rubinet al. has investigated the modification of synaptic e
ficacy incorporating several types of dumping scheme so
the synaptic efficacy is restricted to positive value@60#, and
such the approach may be required to get further insight

In the present study, we have investigated the station
properties of perfect retrieval state analytically in the limit
an infinite number of spiking neurons provided that the nu
ber of encoded patterns is finite. The method of our analy
can be extended to the cases such as superimposed
patterns, in which the firing times of neurons are defined

t i~k!5
T̃

2p/ l
$u i

1 mod~2p/ l !%1kT̃, i 51, . . . ,N,

k5 . . . ,22,21,0,1,2, . . . , ~48!

where pattern 1 is the target pattern and positive integl
denotes the degree of superimposing~Taking l 51 corre-
sponds to the case of perfect retrieval!. In addition, more
complicated firing patterns such as a mixture state, in wh
two or more patterns are retrieved at the same time, are
pected to be realized under an appropriate initial conditi

he
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though theoretical treatment of them may be difficult
achieve. We have shown that perfect retrieval is realized
the region represented by PR in Figs. 6~a! and 8~a!. Never-
theless, what happens below the perfect retrieval phase
mains unclear for lack of the method of analysis. On
basis of the numerical simulations, we have shown that
ordered state can occur below the perfect retrieval phas
the case of discrete type of patterns as is described in Fig
Whether this disordered firing patterns is chaotic or not is
interest, but is beyond the scope of the present study.

It is worth noting that the learning rule~10! is applicable
to a wide class of spatiotemporal patterns. For example,
lowing almost the same scheme as the present study
would be able to encode spike trains generated by inde
dent Poisson process. In this case, the firing rate assum
the Poisson process is expected to affect the quality
memory retrieval, because the presence of the refractory
riod of neurons prevents retrieval of the spike trains with
high firing rate. It is of interest to investigate the propert
of the retrieval process of the present model under the in
ence of white noise. It has turned out that the occurrenc
the gamma oscillation contributes to the realization of
trieval of discrete type of patterns, and investigating the s
bility of such the gamma oscillation against noise is of p
ticular interest. It is also of interest to study the retriev
process of networks of neurons with heterogeneity.

It seems to be difficult to carry out the rigorous derivati
of the storage capacity of the present model, though it m
be possible to evaluate approximate value of the storage
pacity by reducing the present model into networks of sim
phase oscillators@61#. In the previous study we have intro
duced the method to reduce networks of spiking neurons
the Hopfield models when networks of spiking neurons
hibits roughly synchronized firing@23#. This reduction tech-
nique might also be applicable to the present model to ob
the approximate value of the storage capacity when disc
type of patterns are encoded and firing pattern of neur
becomes discrete. For the purpose of elucidating how glo
inhibition affects the retrieval properties of the network, w
numerically estimate the storage capacityac5Pc/N for vari-
ous value of global inhibition in the case of the discrete ty
of patterns (Q510, Apyr517 000, andN52000, see Fig.
13!. With the strong intensity of global inhibition (Aint
51250), the storage capacity is estimated to beac;0.008,
while with the weak intensity of global inhibition (Aint
5250) it is estimated to beac;0.006. It seems that net
works with strong intensity of global inhibition are a littl
more tolerant with regard to such fluctuation as cross
term than that with weak intensity of global inhibition.

In the present study, the occurrence of the gamma os
lation is assumed for the purpose of controlling spike timin
of neurons. On the other hand, it is also possible to con
spike timings of neurons by assuming the conduction de
with respect to action potentials. In such a case, the sp
timing-dependent learning rule takes the form

Ji j 5
1

N (
m51

P

W̃~si
m2sj

m2di j !, ~49!
01190
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wheredi j represents the conduction delay of action poten
from neuronj to neuroni. Even in this case, following the
same scheme as Ref.@23#, the stationary properties of perfec
retrieval state can be evaluated analytically provided that
time delaysdi j are independent random variables obeying
certain probability distributionPd(di j ).

Finally, we discuss the implication of the present study
the light of the experimental studies regarding place cells
the rat hippocampus. It has been reported that place cel
the rat hippocampus begin to exhibit the environme
specific distribution of center of place field after explorin
several environments~i.e., exploring a number of test cir
cuits! @62–64#. These results imply that the rat hippocamp
is capable of memorizing not only a single pattern but als
number of patterns, and this aspect of the rat hippocam
may be well accounted for by the present model. In
present study, encoded periodical spatiotemporal patterns
retrieved with the different time scale depending on the
tensity of global inhibition. Some recent results of expe
ments begin to suggest that the spike sequences observ
the hippocampus of running rats is replayed in a tim
compressed manner during sharp wave burst in slow-w
sleep@65,21#. These results imply that the spike sequenc
memorized in a running rat is replayed with the differe

FIG. 13. We estimate the storage capacityac5Pc/N based on
the numerical simulations withN52000. As a number of stored
patternsP increases, the distribution of the firing times of neuro
becomes wider as a result of the increase in the size of the cros
term. In the case of~a!, pattern retrieval is still successful since th
loading ratea5P/N50.007 is less than the storage capacityac.
On the other hand, in the case of~b!, pattern retrieval is impossible
since the loading ratea50.01 is beyond the storage capacityac.
The value of parameters areQ510, Apyr517 000, and Aint

51250.
3-13
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time scale when rats is in slow-wave sleep. Actually, with
parametersApyr550 000, Aint5500, Q510, tpyr,155
~ms!, the present neural network model exhibits the perf
retrieval accompanied by the high frequency oscillat
~;150 Hz! in spite of tpyr,1,t int,1. Such high frequency
oscillation, namely, the ripple oscillation, is really observ
in the rat hippocampus, and some experimental results
port the hypothesis that the ripple oscillation is the retrie
process transferring the memory stored in the hippocam
to the other regions~Ref. @66#!. For a more complete unde
standing of a real nervous system it might be necessar
assume interactions among interneurons though we ne
them for brevity in the present study.

When a rat is running, a population of neurons in t
hippocampus exhibit the theta rhythm, which is roughly sy
chronized firings of neurons with a characteristic frequen
of 7–9 Hz. To get more insight into the information proces
ing conducted in the hippocampus it may be necessary to
more attention to the role of the theta rhythm in the retrie
process of the spatiotemporal patterns. In the presence o
theta rhythm, the sequential firings of neurons are suppre
during the period when the averaged activity of neuro
takes the low value. In such a case, we may need to ass
some kind of synaptic electric currents that act as a trigge
retrieve the target pattern for individual theta cycles. Givi
a good account for these problems will be one of the fut
targets of our study.
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APPENDIX: THE HODGKIN-HUXLEY EQUATIONS

Hodgkin-Huxley equations are the ordinary different
equations with four degrees of freedom, which have b
developed to describe the spike generation of the squ
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giant axon @57#. In the present study, for the dynamic
f (V,W1 , . . . ,Wn) and gj (V,W1 , . . . ,Wn) ( j 51, . . . ,n),
we assume the Hodgkin-Huxley equations, which are writ
in the form

Cm f ~V,W1 , . . . ,W3!

5ḡNaW2
3W1~VNa2V!1ḡKW3

4~VK2V!1ḡL~VL2V!,

~A1!

g1~V,W1 , . . . ,W3!5a1~12W1!2b1W1 , ~A2!

g2~V,W1 , . . . ,W3!5a2~12W2!2b2W2 , ~A3!

g3~V,W1 , . . . ,W3!5a3~12W3!2b3W3 , ~A4!

with

a150.01~102V!Y H expS 102V

10 D21J , ~A5!

b150.125 exp~2V/80!, ~A6!

a250.1~252V!Y H expS 252V

10 D21J , ~A7!

b254 exp~2V/18!, ~A8!

a350.07 exp~2V/20!, ~A9!

b351Y H expS 302V

10 D21J , ~A10!

whereV represents the membrane potential, andW1 andW2
the activation and inactivation variables of the sodium c
rent, andW3 the activation variable of the potassium curre
The values of parameters areVNa550 (mV), VK

5277 (mV), VL5254. 4 (mV), ḡNa5120 (mS/cm2), ḡK

536 (mS/cm2), ḡL50.3 (mS/cm2), andCm51(mF/cm2).
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